
Running head: Overview of the OWASP Top Ten Proactive Controls 1

Copyright 2021 Sean Scott. All Rights Reserved. Licensed under CC BY-NC-ND

Overview of the OWASP Top Ten Proactive Controls

Sean Scott

University of Missouri—St. Louis

SP21-INFSYS6868-001

Dr. Anshuman Singh

Overview of the OWASP Top Ten Proactive Controls 2

Abstract

The OWASP Top Ten Proactive Controls is a list of the ten most important things a development

team can do to proactively prevent application security bugs. Studies have shown (Veracode, 2020) that

SAST and DAST tools are effective in reducing the number of bugs that are released into production.

SAST and DAST tools are automated tools that can find certain software security bugs. However, while

SAST and DAST tools can help find bugs prior to releasing the product code into production,

implementing the OWASP proactive controls document can reduce the bugs found by SAST and DAST

tools and, therefore, decrease the amount of rework required.

Keywords: OWASP, Top Ten, Risks, Proactive Controls

Overview of the OWASP Top Ten Proactive Controls 3

Overview of the OWASP Top Ten Proactive Controls

 The OWASP Top Ten Proactive Controls document lists the top ten techniques that can proactively

prevent many application security bugs (OWASP, 2018, p. 5).

The purpose of the list is two-fold. First, to inform application developers on the techniques in the

document and, second, to get application developers to begin thinking about application security. The

document is a starting point for security and should not be considered as comprehensive documentation

on preventing application security bugs (OWASP, 2018, p. 3).

History

The OWASP Proactive Controls list was first created by the OWASP Foundation in 2014 (OWASP,

2014 B). It was updated in 2016 (OWASP, 2016) and then the latest version was published in 2018

(OWASP, 2018, p. 1). In performing research for each publication, the OWASP team gathers data and

then scores the data and selects the top ten items to include based upon the need at the of the time of the

study (OWASP, 2018, p. 3). Table 1 OWASP Proactive Control Version Comparison lists the top ten

proactive controls the OWASP organization recommended for each of the three versions of the

preventative controls lists that have been published to date.

The OWASP organization also publishes another, more well-known list, the OWASP Top Ten Risks

list. The Top Ten Risks list represents the top ten application security risks the OWASP team has

determined exist in the wild at the time of publication. The OWASP Proactive Control list describes ten

activities or actions development teams can take to proactively prevent introducing application security

bugs represented in the risk list into their code (OWASP, 2018, p. 6). The risks and controls lists are

published at different times, by different teams, so there may not be a direct correlation between the two

but, in practice, adhering to the suggestions in the latest OWASP Proactive Controls list tends to protect

against the risks defined in the latest risk list.

Overview of the OWASP Top Ten Proactive Controls 4

The Proactive Controls

C1: Define Security Requirements

Security requirements help prevent all types of application security bugs (OWASP, 2018, p. 9). The

Application Security Verification Standard (ASVS) is a categorized list of security requirements that can

be helpful to teams as they develop their security requirements (OWASP, 2020, p. 7). The ASVS model is

divided into three levels.

Level 1 is the lowest assurance level and “adequately defends against application security

vulnerabilities that are easy to discover and included in the OWASP Top 10 and other similar checklists”

(OWASP, 2020, p. 11). It represents an effective level of security for many public Websites that store

little or no personal information. For example, a Website that only has a list of email addresses it uses for

its login scheme.

Level 2 is more appropriate for Web applications that store more personal information than just an

email address. As the ASVS puts it, it should be used for “applications that handle significant business-to-

business transactions, including those that process healthcare information, implement business-critical or

sensitive functions, or process other sensitive assets, or industries where integrity is a critical facet to

protect their business, such as the game industry to thwart cheaters and game hacks” (OWASP, 2020, p.

11).

Level 3 requires an extreme amount of security architecture and coding. The ASVS states Level 3,

“is typically reserved for applications that require significant levels of security verification, such as those

that may be found within areas of military, health and safety, critical infrastructure, etc.” (OWASP, 2020,

p. 11).

Two of the more commonly used security maturity models also require security requirements to be

documented. The BSIMM includes “Standards and Requirements” as one of the twelve practices it

defines (Synopsis, 2020, p. 39). Task SR1.3 Translate compliance constraints to requirements requires

development teams to turn “compliance constraints…into software requirements for individual projects”

(Synopsis, 2020, p. 71).

Overview of the OWASP Top Ten Proactive Controls 5

In the OpenSAMM model, the Security Requirements (SR) practice falls under the construction

business function. It requires teams to commit time to, “proactively specifying the expected behavior of

software with respect to security” (OpenSAMM, 2020, p. 12).

One common problem among application security documents, like the OWASP Proactive Controls

list, BSIMM, and OpenSAMM, is they blur the distinction between a requirement and a constraint. By

definition, a requirement is something that must be present1, while a constraint is a limitation2 on how a

requirement is delivered. By this definition, a rule that states that all queries must be parameterized

queries is not technically a requirement that can be fulfilled, because it must be done for every functional

requirement for which database access is needed. This makes it a constraint on how functional

requirements are built. Conversely, a requirement stating all passwords must be at least 8 characters in

length and include at least one number and one special character, is a requirement that can be coded and

then marked as complete.

While this may sound like semantics, it should be remembered that tools such as Jira, a common tool

used to manage requirements, is designed to have a requirement (in the form of a task or story) opened,

assigned, completed, and then closed. This process does not, for example, support a “requirement” to use

parameterized queries everywhere database interaction is required. This type of need is better defined as a

constraint and documented as part of the description of the functional requirement or, better yet, as part of

the acceptance criteria.

C2: Leverage Security Frameworks and Libraries

Secure frameworks and libraries can help to prevent a wide range of Web application vulnerabilities

(OWASP, 2018, p. 10). The National Vulnerability Database is a repository of known software

vulnerabilities. For example, as of the writing of this document, the database shows 79 open

1 See https://www.merriam-webster.com/dictionary/requirement
2 See https://www.merriam-webster.com/dictionary/constraint

https://www.merriam-webster.com/dictionary/requirement
https://www.merriam-webster.com/dictionary/constraint

Overview of the OWASP Top Ten Proactive Controls 6

vulnerabilities that can affect the ReactJS library (NIST, 2021). Several security frameworks use this data

to inform development teams about vulnerabilities in frameworks they are using, including OWASP

Dependency Check, RetireJS, and JFROG Xray. These security frameworks, when installed and

configured properly, work to help development teams keep the code they import into their solution as free

from vulnerabilities as possible (OWASP, 2018, p. 10).

Security frameworks can also be used to implement functionality directly into the application. For

example, OAuth 2.0 is an open-source secure authorization framework that has the benefit of being

written and reviewed by security experts. It can be argued that authentication, authorization, login

management, and session management form the foundation of application security. If these are not secure,

then there is no way to assure only authorized users have access to the system data.

C3: Secure Database Access

The second most dangerous access an attacker can gain, after root access, is the ability to manipulate

the database. Gaining access to a system’s database would allow an attacker to perform attacks from

defacing the application to destroying or stealing data.

According to the OWASP Proactive Controls document (OWASP, 2018, pp. 11-12) there are four

main areas a development team should consider regarding database access: 1) securing their queries, 2)

securing the database configuration, 3) securing authentication, and 4) securing communication.

Securing all four of these areas can help prevent Web-based injection attacks (OWASP, 2018, p. 12)

and mobile attacks described in M1: Weak Server Side Controls of the 2014 version of the OWASP

Mobile Top Ten (OWASP, 2014 A).

Secure Configuration

Unnecessary features and services

Most modern database management systems come with various components other than the database

engine. For example, SQL Server 2019 includes Analysis Services, Reporting Services, Integration

Services, and Machine Learning Services among others (Microsoft, 2021 A). Turning off unused

Overview of the OWASP Top Ten Proactive Controls 7

components should be part of the system hardening process performed prior to using the DBMS. Every

running service is a potential entry point into the application or server.

Service Packs

Service packs fix bugs as they are found. Failure to install services packs on a regular basis

introduces the organization to increased risk of an attack. Microsoft SQL Server is updated several times

per year (Microsoft, 2021 B).

Unused protocols

Microsoft SQL Server supports three network protocol configurations, Shared Memory, TCP/IP, and

Named Pipes (Microsoft, 2019 A). Turning off unused protocols gives attackers fewer avenues of attack.

Change ports

The port for the Default Instance of SQL Server is 1433 (Anis, 2012). Other services have their own

default ports set. Changing the ports used by each service makes it more difficult for attackers because

they will not know what port goes to each of the services.

SQL Server browser service

“The SQL ServerBrowser [sic] program runs as a Windows service. SQL Server Browser listens for

incoming requests for Microsoft SQL Server resources and provides information about SQL Server

instances installed on the computer” (Microsoft, 2017 A). Information provided by the Server Browser

service is invaluable to attackers. It should be turned off when it is not needed.

Disable shell

The xp_cmdshell transact SQL command is available in Microsoft SQL Server. It “spawns a

Windows command shell and passes in a string for execution. Any output is returned as rows of text”

(Microsoft, 2019 C). Running Windows O/S commands from within the database is a dangerous

procedure. Disabling the shell will prevent attackers from running a Windows O/S command through the

SQL Server.

Overview of the OWASP Top Ten Proactive Controls 8

Secure Authentication

SQL Server has two authentication modes: Windows and Mixed Mode (Microsoft, 2017 B). Mixed

mode allows Windows and SQL Server authentication. There is no SQL Server authentication only mode.

Because allowing SQL Server authentication requires Windows mode to also be enabled, even if not

being used, using Windows mode limits the footprint of attack. It also allows Kerberos security protocol

to be used and “offers additional password policies that are not available for SQL Server logins”

(Microsoft, 2017 B).

Secure Communication

TLS should be used to encrypt data in transit between the client and server. “TLS allows the client

and the server to authenticate the identity of each other. After the participants are authenticated, TLS

provides encrypted connections between them for secure message transmission” (Microsoft, 2021 C).

C4: Encode and Escape Data

While not failproof, using parameterized queries, rather than concatenating strings received from

user input to build database queries, is recommended. Escaping or encoding data can also be used to help

keep queries secure. For example, adding a backslash in front of all single quotes will cause most SQL

database engines to treat the single quote as text and not recognize it as a string terminator.

Another option is to use quoting syntax. For example, the string ' or 1 = 1 -- can be used to bypass

query logic in certain unsecure queries. However, wrapping the dangerous string with quote syntax, q'['

or 1 = 1 --]' will instruct the database engine to view the entire string provided by the user interface as

string text and will not be interpreted by the query engine.

Encoding converts characters into their equivalent HTML character code. For example, encoding a

less-than character “<” to the string < will tell the HTML rendering engine to display the less-than

character, rather than interpreting it as the start of an HTML tag. The result of proper encoding will cause

any injected code to be printed to the screen, rather than being interpreted by the browser.

Proper encoding and escaping can help prevent Injection and Cross-site Scripting attacks (OWASP,

2018, p. 15).

Overview of the OWASP Top Ten Proactive Controls 9

C5: Validate All Inputs

Input validation is an important feature of user experience design. However, client-side user input

validation should never be considered a form of data security. Attackers can bypass client-side validation

by turning off the script or communicating directly with the server using a browser or a tool like Burp

Suite.

Therefore, it is important for all data coming into the system be validated by the back-end code.

According to the OWASP Proactive Controls guide, there are two types of validity: Syntax and Semantic

(OWASP, 2018, p. 16). If data is syntactically valid, it has the correct form. For example, if the system

expects a social security number, it might check to make sure there are nine digits and no other characters,

or eleven digits with dashes in the fourth and seventh position. If it expects a date, then it should assure

the data looks like a valid date was sent. Regular expressions are one method for determining if a value is

syntactically valid. However, they can be difficult to construct correctly (OWASP, 2018, p. 16). Regular

expressions can also cause serious problems if not designed carefully. For example, input strings can be

crafted that can cause some regular expressions to get lost in “backtracking loops” (Sebastian, 2021) and

create a denial-of-service interruption, known as a ReDoS (Regular Expression Denial of Service.)

Semantic validation means the data is in the correct range. For example, if a piece of data represents

an invoice date, then we might assume the date should be on or after the date for the earliest invoice in the

system, and not in the future.

Another tool available to us to validate input is the use of whitelists (OWASP, 2018, p. 16). A

whitelist is a list of acceptable values. For example, a list of valid countries or states. We might also use

whitelists to validate a request is originating from an IP address which exists on a pre-defined list.

However, caution must be taken for this kind of whitelist validation because attackers can spoof their IP

address. Blacklisting is the opposite of whitelisting, i.e., it is a list of “bad” things that should not be

accepted. In general, blacklists are ineffective and should be avoided in most instances. It is impossible to

maintain a list of every iteration of every bad value. However, with that said, sometimes blacklists are the

best choice. For example, anti-virus software essentially uses a list of known virus fingerprints to

Overview of the OWASP Top Ten Proactive Controls 10

determine if a file is infected. Likewise, most modern browsers will read a list of known dangerous sites

and warn the user if they attempt to browse to a URL on the list. These are both examples of effective use

of blacklists. One common attribute each of these have is a dedicated group of people or an organization

that works to keep the list updated. Without constant updating, blacklists become stale and ineffective.

And, worse than that, they continue to give the illusion of security.

According to the OWASP Proactive Controls guide, effectively validating input can:

• reduce the attack surface of applications and can help make attacks against an application

more difficult, and

• help prevent Cross-site Scripting and SQL Injection attacks, although validating input is not

sufficient by itself (OWASP, 2018, p. 20).

C6: Implement Digital Identity

“Digital Identity is the unique representation of a user (or other subject) as they engage in an online

transaction” (OWASP, 2018, p. 21). In other words, a digital identity is an electronic data string, such as a

cookie, token, or key, that can be used to identify a single entity. A digital identity is created by first

creating the identity object and then verifying the entity is who the system expects them to be. Once the

entity has verified their identity, the digital identity is then trusted to represent the entity. This process of

assuring the entity is who they are expected to be is known as authentication. Authentication is the first

step in enforcing access control. Once we know the entity is who we expect them to be, the next step is to

verify the entity is allowed to perform each activity they attempt to perform. This step is called

authorization. The most secure authentication methods are of no value if proper authorization is not

performed prior to each action. Authorization will be discussed in the next section, Enforce Digital

Identity.

A login ID and password is a common form of authentication. However, multi-factor authentication

use is on the rise by many online services (Microsoft Support, n.d.). Authentication normally requires

some kind of identity, e.g., a login ID or email address, and then something else that helps prove the

Overview of the OWASP Top Ten Proactive Controls 11

person is the actual person represented by the identity string. This proving data often falls into one of

three categories:

• Something you know, e.g., a PIN or password,

• Something you have, e.g., a smartphone or other physical device,

• Something you are, e.g., fingerprint, or other biometric.

Multi-factor authentication combines two or more pieces of proving data. For example, a password

and a one-time pin sent to your smartphone. Common examples of one-time pin providers are RSA

tokens and the Microsoft Authenticator app. RSA soft tokens, which are smartphone apps capable of

generating pins, and the Microsoft Authenticator app are potentially even more secure than hard

(physical) tokens. A hard token continuously displays a PIN valid for a short period of time. However,

most soft-token software requires the person to not only have the physical item, for example, the

smartphone, but have the ability to log into it. Soft tokens can often be setup to accept a fingerprint for

logging in. The effect of this is, in order to gain access to the account (short of hacking the system) the

individual needs to know their login ID and their password, have the smart phone in their possession, and

have the correct fingerprint to enable the app to generate an ID.

The final step in this process is to manage the session. The session is typically where the

authenticated identity is held. Making sure the session is secure and destroyed when the entity logs off is

imperative. If sessions are not handled securely and destroyed in a timely manner, attackers will have a

greater opportunity to hijack the session and gain access to the application as if they were the owner of

the session.

C7: Enforce Access Controls

Knowing the digital identity represents a valid entity is just the first step in securing an application.

As mentioned in the previous section, the next step is to make sure the entity only performs those actions

they are authorized to perform. Authorization should be done prior to each event, especially those that

read from or write to a database. A proper authorization scheme should assume the entity is NOT able to

perform an action until it determines otherwise. This is known as the deny by default (OWASP, 2018, p.

Overview of the OWASP Top Ten Proactive Controls 12

28) principle. Another principle that should be implemented is that of least privilege. Least privilege

means that entities should be given the least amount of access necessary to perform the job (OWASP,

2018, p. 28). In other words, an admin-level account should never be used by a system to login to a

database. A database administrator should create a login for the database which only has the privileges it

needs to run properly.

The OWASP Top Ten Proactive Controls guide (p. 27) describes the four most common types of

access control:

• Discretionary Access Control (DAC)—which limits access based upon identity and need-

to-know.

• Mandatory Access Control (MAC)—which limits access based upon the sensitivity of the

data.

• Role Based Access Control (RBAC)—which limits access based upon a set of defined roles

and those roles to which the entity has been assigned.

• Attribute Based Access Control (ABAC)—which limits access based upon an arbitrary set

of attributes assigned to the object and the entity.

Another common type of access control is Rules Based Access Control (RuBAC)—which limits

access based upon a set of business rules. For example, a rule-based access control could allow a user to

only have “access to files during certain hours of the day” (Gentry, 2021).

Adequate authentication, authorization, and session management can help prevent broken

authentication and session management, which is A2 on the 2017 OWASP Top Ten Risk list and broken

access control, which is A5 on the 2017 OWASP Top Ten risk list. It can also help prevent poor

authorization and authentication, which is M5 on the 2014 Mobile Top Ten Risk list.

C8: Protect Data Everywhere

Businesses often protect their data because it is in their best interest to do so. Trade secrets and other

information that gives the business an edge against their competition is often kept locked away and under

Overview of the OWASP Top Ten Proactive Controls 13

tight controls. Publicity from past data breaches also put pressure on businesses to protect their client

data, so they do not find themselves in the same position as the organizations they heard about in the

news.

However, there are also government and industry regulations and rules that have been implemented

to put even more pressure on businesses to protect their client data (Raynovich, 2020). A few of the more

common include:

• Federal Information Processing Standard Publication (FIPS)— establishes a security

standard for the design and implementation of cryptographic modules.

• General Data Protection Regulations (GDPR)—consolidates the information security laws

in the European Union.

• The Federal Information Security Management Act (FISMA)— requires federal agencies

or state agencies managing federal programs, such as Medicare, to protect sensitive data.

• Health Insurance Portability and Accountability Act (HIPAA)—protects the integrity,

privacy, and availability of personal health information in the United States.

• Payment Card Industry Data Security Standards (PCI DSS)—is a set of guidelines for

data security created by the payment card industry, e.g., credit card companies, and requires

any entity that accepts credit cards to adhere to the principles and policies described in the

document.

• Cybersecurity Information Sharing Act (CISA)— is U.S. federal law that allows

technology and manufacturing companies to share Internet traffic information with the

government around cyber threats (some fear it may weaken privacy protections).

Protecting data is expensive. Physical security requires an investment in locks and hardened

enclosures. Electronic security is often accomplished through encryption. Implementing a proper

encryption scheme takes time and a good understanding of how the selected encryption mechanism

works. In addition to being expensive monetarily, encryption is also slow. Encrypting all data everywhere

Overview of the OWASP Top Ten Proactive Controls 14

would impact the responsiveness of the application without providing a significant amount of security

over just encrypting sensitive data. Therefore, the first step in implementing an encryption scheme is to

classify the data. There are many ways to do this, and the rules and regulations listed earlier can provide

guidance; but the most important distinction to be made is to determine what data needs to be protected.

Once the data has been classified, the sensitive data needs to be protected, which usually is

accomplished by encryption. The sensitive data needs to be encrypted in two places: in transit and at rest.

(A third place, known as data in use, also exists but, since that describes data in RAM or cache memory,

it is outside of the scope of protect data everywhere because the data in memory needs to be unencrypted

so it can be analyzed and manipulated.)

In transit encryption means using a mechanism such as transport layer security (TLS) to encrypt the

data as it travels from the server to the client and back. TLS requires a certificate to exist on the server,

and for the client to use the HTTPS protocol.

Encryption at rest means using encryption when storing data. Microsoft SQL Server (Microsoft,

2019 B) and Oracle Database Server (Oracle, n.d.) both support transparent data encryption (TDE). TDE

encrypts and decrypts the data automatically which, for the most part, makes the process invisible to the

application.

Protecting data everywhere using encryption helps prevent sensitive data exposure, which is A3 on

the 2017 OWASP Top Ten Risks list; and insecure data storage, which is M2 on the 2014 OWASP Top

Ten Mobile Risks list.

C9: Implement Security Logging and Monitoring

Implementing security logging and monitoring is the ninth proactive control; and the first one that

does not actually do anything to help prevent an attacker from gaining access. However, what it does do,

when implemented correctly, is to help organizations limit the damage done by an attacker by helping

them detect the attack as early as possible.

Overview of the OWASP Top Ten Proactive Controls 15

There are several logging frameworks that are worth mentioning, including Graylog3, Logstash4,

Fluentd5, Flume6, and Logalyze7. All of these frameworks do the “heavy lifting” of logging, making them

easier to implement than a custom solution. It is still up to the development team to decide what events

should be logged; then add the call to the logging framework, passing it the appropriate information.

Logging is not useful if the data is never analyzed. There are several log aggregator and analyzer

tools available, including Papertrail8, Loggly9, LogDNA10, and Splunk11. These tools allow the

organization to aggregate the massive amount of data created by a logger and analyze it to see patterns

that might suggest an attacker is attempting to gain or has gained access to the system. Logs can also feed

into an automated intrusion detection system that can automatically send an email or text message

warning of a potential security event.

Logs are also a valuable resource for forensic analysis and investigation. They provide non-refutable

evidence of an event occurring. Non-refutation is an important part of an organizational security strategy

because it holds individuals accountable for what happens through the use of their credentials.

As important as logs are, there are a couple caveats each team should keep in mind. First, logs take a

lot of space. So, it is important to analyze the logging needs carefully, so they do not log too little or too

much information. The second caveat is to be careful about what data gets stored in the logs. While it may

be beneficial to have logs that can identify the line of code that caused an error, along with the data that

was present at the time the error occurred, the development team needs to make sure that they are not

storing personal data in the logs. Although, this is not always possible. In those cases, the least amount of

3 https://www.graylog.org/
4 https://www.elastic.co/logstash
5 https://www.fluentd.org/
6 https://flume.apache.org/
7 http://www.logalyze.com/
8 https://www.papertrail.com/
9 https://www.loggly.com/
10 https://www.logdna.com/
11 https://www.splunk.com/

Overview of the OWASP Top Ten Proactive Controls 16

data possible should be stored for the shortest amount of time; and access to the log data should be

restricted.

C10: Handle All Errors and Exceptions

Unhandled errors are like gold to an attacker; especially those that display verbose information.

Development teams should limit the data shown in the event an unhandled error occurs, but they should

also make every effort to handle all errors and exceptions using Try/Catch handlers, or whatever

mechanism their coding language uses. Catching all errors and exceptions, logging them for review by the

development team, and then offering a user-friendly message on what to do next is the best way to handle

errors. Most honest users do not care about what error occurred, they just want to know what they should

do to fix it or to move on.

Development teams creating Microsoft DotNet applications running on IIS can modify the

Web.config file to turn the customErrors attribute on (Microsoft, 2020). This will cause a custom page to

be displayed in the event an unhandled error occurs, preventing the actual error information from being

displayed on the client. Because this is a simple configuration change, it allows the development team to

have verbose errors display on the development environment, to assist in debugging, but hide the

information on the production environment.

Conclusion

Implementing the OWASP Top Ten Proactive Controls will not prevent all attacks all of the time.

However, implementing these controls will help a development team start building security into their

applications early in the development process. The worst thing a development team can do is to not think

about security until they get penetration test findings. By then, it could already be too late to prevent an

attack. Developing quality code means developing secure code. It is important for every member of the

development team to take application security seriously and do their part to protect their application from

attacks.

Overview of the OWASP Top Ten Proactive Controls 17

References

Anis, Y. (2012, Aug 20). SQL Server: Frequently Used Ports. Retrieved from Microsoft TechNet:

https://social.technet.microsoft.com/wiki/contents/articles/13106.sql-server-frequently-used-

ports.aspx?

Batteau, A. W. (2011). Creating a Culture of Enterprise Cybersecurity. International Journal of Business

Anthropology, 2, 36-47. Retrieved from https://www.researchgate.net/profile/Allen-

Batteau/publication/266068991_Creating_a_Culture_of_Enterprise_Cybersecurity/links/56b2815

308aed7ba3fede925/Creating-a-Culture-of-Enterprise-Cybersecurity.pdf

Boote, J. (2020, July 22). Are you making software security a requirement? Retrieved from Synopsis:

https://www.synopsys.com/blogs/software-security/software-security-requirements/

Carielli, S. (2020). The State Of Application Security, 2021. Cambridge, MA: Forrester. Retrieved from

https://www.forrester.com/report/The+State+Of+Application+Security+2021/-/E-RES164041

Dawson, H. (2019, June 27). The Most Influential Security Frameworks of All Time. Retrieved from Info

Security Group: https://www.infosecurity-magazine.com/opinions/most-influential-frameworks-

1-1-1/

Gentry, S. (2021, 03 02). Access Control: Models and Methods [updated 2021]. Retrieved from Infosec

Institute: https://resources.infosecinstitute.com/certification/access-control-models-and-methods/

Granneman, J. (2019, May). Top 7 IT security frameworks and standards explained. Retrieved from

TargetTech: https://searchsecurity.techtarget.com/tip/IT-security-frameworks-and-standards-

Choosing-the-right-one

IBM. (2020). Cost of a Data Breach Report 2020. IBM.

Microsoft. (2017 A, 03 14). SQL Server Browser Service. Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/sql-server-browser-

service?view=sql-server-ver15

Overview of the OWASP Top Ten Proactive Controls 18

Microsoft. (2017 B, 03 14). Choose an Authentication Mode. Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/sql/relational-databases/security/choose-an-authentication-

mode?view=sql-server-ver15

Microsoft. (2019 A, 01 19). Default SQL Server Network Protocol Configuration. Retrieved from

Microsoft Docs: https://docs.microsoft.com/en-us/sql/database-engine/configure-

windows/default-sql-server-network-protocol-configuration

Microsoft. (2019 B, 05 09). Transparent Data Encryption (TDE). Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-

encryption?view=sql-server-ver15

Microsoft. (2019 C, 121 01). xp_cmdshell (Transact-SQL). Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-

transact-sql?view=sql-server-ver15

Microsoft. (2020, 07 28). Create custom error reporting pages in ASP.NET by using Visual Basic .NET.

Retrieved from Microsoft Docs: https://docs.microsoft.com/en-us/troubleshoot/aspnet/custom-

error-reporting-page

Microsoft. (2021 A, 03 26). Editions and supported features of SQL Server 2019 (15.x). Retrieved from

Microsoft Docs: https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-

server-version-15?view=sql-server-ver15

Microsoft. (2021 B). KB4518398 - SQL Server 2019 build versions. Retrieved from Microsoft Support:

https://support.microsoft.com/en-us/topic/kb4518398-sql-server-2019-build-versions-782ed548-

1cd8-b5c3-a566-8b4f9e20293a

Microsoft. (2021 C, 03 31). Using encryption. Retrieved from Microsoft Docs:

https://docs.microsoft.com/en-us/sql/connect/jdbc/using-ssl-encryption?view=sql-server-ver15

Microsoft Support. (n.d.). What is: Multifactor Authentication. Retrieved from Microsoft Support:

https://support.microsoft.com/en-us/topic/what-is-multifactor-authentication-e5e39437-121c-

be60-d123-eda06bddf661

Overview of the OWASP Top Ten Proactive Controls 19

Mutune, G. (n.d.). 23 Top Cybersecurity Frameworks. Retrieved from CyberExperts.com:

https://cyberexperts.com/cybersecurity-frameworks/

NIST. (2021). Search Results for React. Retrieved from National Vulnerability Database:

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=react&

search_type=all

OpenSAMM. (2020). OpenSAMM V2.0. Retrieved from OpenSAMM.org:

https://github.com/OWASP/samm/raw/master/Supporting%20Resources/v2.0/OWASP-SAMM-

v2.0.pdf

Oracle. (n.d.). 2 Introduction to Transparent Data Encryption. Retrieved from Oracle Help Center:

https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm

OWASP. (2014 A). OWASP. Retrieved from OWASP Mobile Top 10: https://owasp.org/www-project-

mobile-top-10/

OWASP. (2014 B). OWASP Proactive Controls 2014. Retrieved from Archive.org:

https://web.archive.org/web/20150908052859/https://www.owasp.org/images/0/07/OWASP_Pro

active_Controls_v1.pdf

OWASP. (2016). OWASP Proactive Controls 2016. Retrieved from OWASP: https://owasp.org/www-

pdf-archive/OWASP_Proactive_Controls_2.pdf

OWASP. (2017). OWASP Top 10 Risks. Retrieved from https://owasp.org/www-pdf-

archive/OWASP_Top_10-2017_%28en%29.pdf.pdf

OWASP. (2018). OWASP Proactive Controls for Developers. Open Web Application Security Project.

Retrieved from https://owasp.org/www-pdf-

archive/OWASP_Top_10_Proactive_Controls_V3.pdf

OWASP. (2020, October). ASVS. Retrieved from OWASP:

https://github.com/OWASP/ASVS/raw/v4.0.2/4.0/OWASP%20Application%20Security%20Veri

fication%20Standard%204.0.2-en.pdf

Overview of the OWASP Top Ten Proactive Controls 20

OWASP. (2021). Database Security Cheat Sheet. Retrieved from OWASP Cheat Sheet Series:

https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html#database-

configuration-and-hardening

Proserveit. (2020, June 10). Information Security Requirements: Your Obligations & Considerations.

Retrieved from Proserveit: https://www.proserveit.com/blog/information-security-requirements

Raynovich, S. (2020, 09). Data Security Regulations – an Overview. Retrieved from SDX Central:

https://www.sdxcentral.com/security/definitions/data-security-regulations/

Scott, S. (2021). Secure Coding in Large Enterprises: Does Application Security Coaching, Training, and

Consulting Increase a Development Team’s Ability to Deliver Secure Code. Secure360.

Minneapolis, MN.

Sebastian, S. (2021, 03 19). Regexploit – Regular Expression Denial of Service. Retrieved from

ReconShell: https://reconshell.com/regexploit-regular-expression-denial-of-service/

Seiersen, R. (2021, Jan 4). A Modern Shift-Left Security Approach. Retrieved from Forbes:

https://www.forbes.com/sites/forbestechcouncil/2021/01/04/a-modern-shift-left-security-

approach/

Synopsis. (2020). BUILDING SECURITY IN MATURITY MODEL (BSIMM) – VERSION 11. Synopsis.

Veracode. (2020). State of Software Security v11. Burlington, MA: Veracode.

Wild, J. (2018, March 28). Five Most Common Security Frameworks Explained. Retrieved from Origin

Security: https://originit.co.nz/the-strongroom/five-most-common-security-frameworks-

explained/

Overview of the OWASP Top Ten Proactive Controls 21

Tables

OWASP Proactive Control Version Comparison

2018 2016 2014

C01: Define Security

Requirements

C01: Verify for Security Early

and Often

C01: Parameterize Queries

C02: Leverage Security

Frameworks and Libraries

C02: Parameterize Queries C02: Encode Data

C03: Secure Database Access C03: Encode Data C03: Validate All Inputs

C04: Encode and Escape Data C04: Validate All Inputs C04: Implement Appropriate

Access Controls

C05: Validate All Inputs C05: Implement Identity and

Authentication Controls

C05: Establish Identity and

Authentication Controls

C06: Implement Digital Identity C06: Implement Appropriate

Access Controls

C06: Protect Data and Privacy

C07: Enforce Access Controls C07: Protect Data C07: Implement Logging, Error

Handling, and Intrusion

Detection

C08: Protect Data Everywhere C08: Implement Logging and

Intrusion Detection

C08: Leverage Security

Features of Frameworks

and Security Libraries

C09: Implement Security

Logging and Monitoring

C09: Leverage Security

Frameworks and Libraries

C09: Include Security Specific

Requirements

C10: Handle All Errors and

Exceptions

C10: Error and Exception

Handling

C10: Design and Architect

Security In

Table 1 OWASP Proactive Control Version Comparison

Overview of the OWASP Top Ten Proactive Controls 22

Risk and Control Cross Reference

The following table maps the proactive controls with the risks they mitigate. Note that the OWASP

Top Ten Proactive Controls guide is not always explicit about which risks each control helps protect

against. The data in the following table has some level of subjectivity to it.

 Risks

A
0

1

A
0

2

A
0

3

A
0

4

A
0

5

A
0

6

A
0

7

A
0

8

A
0

9

A
1

0

C
o
n
tr

o
ls

C01 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C02 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C03 ✓ ✓ ✓

C04 ✓ ✓ ✓

C05 ✓ ✓

C06 ✓ ✓

C07 ✓

C08
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C09
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C10
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2 Risk and Control Cross Reference

Overview of the OWASP Top Ten Proactive Controls 23

Security Framework List

The following list of security frameworks was published by CyberExperts.com (Mutune, n.d.). It

gives a brief description for each of the listed frameworks.

Framework Name Brief Description

1 ISO IEC 27001/ISO 2700212 Identifies 114 controls in 14 categories

2 NIST Cybersecurity Framework Describes 5 functions

3 IASME Governance Similar to ISO27001

4 SOC 2 61 compliance requirements

5 CIS v7 Lists 20 security requirements

6 NIST 800-53 Framework Designed for use by federal agencies

7 COBIT Integrates IT security, governance, and management.

8 COSO 5 categories with 17 requirements

9 TC CYBER telecommunication standards within European zones

10 HITRUST CSF Created by alliance of health industry companies

11 CISQ Based upon OWASP, SANS, and CWE

12 Ten Steps to Cybersecurity Created by UK department for business

13 FedRAMP Risk framework for federal agencies

14 HIPAA U.S. regulation on use of personal health information

15 GDPR EU regulation

16 FISMA cybersecurity framework for federal agencies

17 NY DFS New York Department of Financial Services

18 NERC CIP Nine standards with 45 requirements

19 SCAP Communication between security products and tools

20 ANSI Used for industrial automation and control systems

21 NIST SP 800-12 Designed for governmental agencies

22 NIST SP 800-14 Lists commonly used security principles

23 NIST SP 800-26 Lists guidelines for managing IT security

